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Distributional inequalities are shown to determine analytic, geometric, and
convergence properties of the "Landau type polynomials" for a continuous
function on a compact interval.

INTRODUCTION

After slightly altering the approximating polynomials in Landau's proof
of the Weierstrass theorem we show that each of the redefined Landau
polynomials In for a continuous function f on [a, b] has any nice property on
[a, b] thatfhas. This is done using distributional inequalities. Also, we prove
that if the 117 -1- 2th distributional derivative offis a measure, thenfE C"'(a, h)
and the sequence of mth derivatives {/;;")J converges uniformly to filii) on
compact subintervals of [a, b].

I. NOTATION AND PRELIMINARIES

The space of test functions on the open interval (a, b) is denoted by Y(a, h)

and its dual space, fY'(a, b), is the set of distributions in (a, b). Forf E L~oc(a, b)
(the space of locally Lebesgue integrable functions on (a, h), Tf is its
associated distribution in £b'(a, b) and gllTf is the nth distributional derivative
off. For TE g'(a, h), l' 0 in (a, b) means that Tis positive semidefinite
(when l' is positive definite we write l' 0). For regular distributions T,
and 1'" in .(/'(a, h), (//I'Tf 1'" in (a, h) means [/'"Tf _. 1'" 0 in (a. h).

C"(a, h) is the space of n-times continuously differentiable functions on
(a, b) and C[a, h] denotes the space of continuous functions on [a, b].

A function f is said to be locally Lipschitzian on (a, b) if for each compact
subinterval [I', d] of (a, b) there exists a constant M (depending on [c. d])
such that fIx) f( y) M . x .r for all x and r in [c, dl
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Let Q,,(x) be (I - x 2)" for x : and 0 elsewhere. Set I je"
J=l Q,,(x) dx. Then K" cnQn forms a Dirac sequence {K,J and the
functions K" are called the Landau kernels.

ForfE C[a, b], let L f be the function determined by the line through the
points (a,f(a)) and (b,f(b)), and letT =~ f- L f on [a, b] and vanish outside
of [a, b]. Landau's proof of the Weierstrass theorem originally given in [5]
(compare [2, p. 214]) essentially states: (1) IffE C[a, b], then L j f K,,>-f
uniformly on [a, b]; and (2) for each n, L( i .J K" is a polynomial of degree

2n on [a, b], where K,,(t) (b all K,,(t!(b a)) and] K" is the

convolution

Define] by

1) dt.

f(x) f(x), ifxE[a,b],

LtC',), if x ¢ [a, b].

Since Lf ·• K" == L(, one can easily show that] K" L f + (j Lf )

K n == Lf • f * K n , and we shall denote the polynomial] K n on [a, b] bYf" ,
and the polynomialfn is called the nth Landau polynomial for f

For any polynomials p and q such that pea) = f(a) and q(b) = f(b), let
f (p; q) be the extension offdefined by

f(p; q)(x) p(x),

f(x),

-~ q(x),

if x < a

ifxE[a,b]

if x b.

Let fn(P; q) denote the convolution f(p; q) Kn . It is easy to see that
fn(P; q) is a polynomial of degree-(2n I + max degr (p, q). Also, since
lK lI ] is a Dirac sequence and since K,,(x ..~. t) as a function of t has support in
[2a -- b, 2b- a] for each x E [a, b],f,Jp; q) _.>- funiformly on [a, b] and

J~(p;q)(x) .= (I< "f(p;q)(t)Kn(., - t)dt.
~' 2ft-I)

We shall call f,,(p; q) a redefined Landau polynomial. Note that when
p q = Lf , thenfn(p; q) is the original nth Landau polynomialflt . However,
when f is a polynomial of degree i, f" is usually of degree 2n, but for each n
the redefined Landau polynomial fn(j: f)(with p 'C q = f) is of degree i and
has the same ith and (i - I)th derivatives asI
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2.

The following lemma is well known (see [I. p. 106] or [3, p. 54]).

LEMMA l. Let T be in y'(a, b).

(i) (IT 0 in (a, b) If and onll' if T is defined In a nondecreasing
.fimction ill (a. h).

(ii) 'JeT 0 in (a, h) if and onlr if T is defined In a convex .filnction
in (a. h).

Remark. Strict inequal ity (i.e., positive definiteness) in Lemma I charac­
terizes the increasing functions and the strictly convex functions.

Let L be defined by L(t) (h-- a)t a.

THEOREM 2. Let f and g be in CIa, h) and suppose that for sonle integer
III 0,

T, in (a. h).

I, then f is locallr of hounded variation in (a, b).

2, thenff"C"'·2(a,h) andflnl 21 is locally Lipschitzian on

(i) Ifm

(ii) If III

(a, b).

(iii) Ilm is any nonnegative integer, then

(h- a)'ii T" I. in (0, I).

Proof (I) Let ~ be such that C g in (a, h). Then'L7~;; 0 in (a, bl,
and by Lemma ](i) we see thatf , is nondecreasing. The result now follows
from the monotonicity ofl , since' f" Cl(a. b).

(ii) Let H be any solution to the ditTerential equation g in (a, h).
Then .'?I"'7j II 0 since'/'''Tll T" . By Lemma I(ii), we can conclude that
the distribution'YiiHTf }{ is defined by a convex function K on (a, h). Then
the continuity off implies that U H )(",2) K. Since convex functions are
locally Lipschitzian and HliJI) is continuous. we obtain that f l111 - 21 exists and
is locally Lipschitzian.

(iii)'YiJlTf T" in (a, b) implies that for any nonnegative test function
cr on (0. I).

.I

I )"1 I f((h a) t a) cr(II"(t) dt
• 0

( 1)'" .(, u a--- - I f(u) cr("') ( I rlu
(h a)." . a

(h

(h

a)'" 1 'L,nT, lcr (i-: n
a)'" 1 T, ( cr (.z...-t

l
__ a )).

1 a
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since the function defined by lI-~ 1>((u - a)!(b ~ a» °is in 9(0, I). Then
because T'(1)((u ~ a)!(b ~ a))) = (b ~ a) T''L(1)), we have that [)'1IITJl

(Ii a)'" T'L in (0, I). The proof is complete.

THEORDI 3. Letr be in C[a, b] and slippoJe Ihatfor some inleger f1l 0.
Ihere exisls g E C[a, b] sllch that

in (2a - h. 2h - a).

Then jor each integer n 111, f~") g" holds in (a, b), where {.f~J and {g"J
are the Landau polynomials for f and g, respeclively, on [a, b]. Furthermore,
/' r= L~o('(a, b) when f1l I and when m ?: 2, fcc cm-2(a, h) and f~) --~ fli)
uniformll' 0/1 compact subintervals of (a, h) for each i (I i m·- 2).

Proof First assume that [a, b] = [0, I] and let K,,,,(x - t) be the regulari­
zations (as defined in [I, p. 56]) of K,,(x t) for fixed XE(O, I). For E

sufficiently small KnAx t) is a nonnegative test function inC/(- I. 2) as a
function of 1 for x r= (0, I) because K,,(x -- t) °and has support [x I,
x - I] C (- I. 2). Furthermore, for /1 - m and fixed x E (0, I) we have that
K,~'::)(X - t)-~ K~,m)(x- t) uniformly on [-I, 2] as E-+ 0. Now we can
conclude that for /1 111.

f~:")(x) f K~:")(x) = ( /(1) K;,III)(X -- I) dt
• --1

~= (-I )''' ( /(1) D;"Ii(K)x 1)) dt
, -1

= lim (--I )'" ( /(1) D;/II)(Kn )x- t)) cit
E -0 'I

lim tj;mT-(K (x ~ t)
E ,0 f. n.f.

The differentiability properties follow from Theorem 2 and permit us to
conclude that f~,i) = pi) K,,+flil uniformly on compact subintervals of
(0. I) becausefUl is in C(O, I)(see [2, p, 212]).

In the general case when [a. b] is any compact interval, we have from
parts (ii) and (iii) of Theorem 2 thatfE C1II-2(a, h) (when m 2), and

in (-I, 2).

Let

L-1(X) = _,x - (~ :
)-a
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then U L),,(Ll(x)) J,,(x) U Kn)(x) for x E [a, b], and it follows
from the part of the theorem already proved that

t;,'''(x) (j d:"I( I. I(y)) ., III
(I) a)

g.,,(x) ,~ £,,(1').

(g 1)(/ ICy))

Since" I Iii, K", we also obtain from the case [a, h] [0, I] that
.I;, -~./ uniformly on [a, b] and .n;1 ~ llil uniformly on eompact subintervals
of (a, b) for each i (I III 2).

Remark. Note that I is monotone on (2a b, 2b a) whenever f is
monotone on (a, b). So Lemma I and Theorem 3 imply that each of the
original Landau polynomials I" is monotone on [a, b) when f is.

THEOREM 4. Let f be in C[a, b) and suppose that for some integer m O.
there exists g E C[a, b) such that

'/"'T, in (a, b).

Then there exists a sequence of redefined Landau polynomials if,,: depending
0/1 m and g such that 1,~III) c~" holds in (a, b) for each /1, where L~"l is a rede­
fined sequence of Landau polynomials which conl'erges unif(Jrmly to g on [a. b).
Furthermore, f' E LL,,(a, b) when m I and when m 2, fE C',,-:2(a, b) and
l,:i) -- ~ fii) uniformly on compact subintCl'l'als of (a, b) for each itO
m 2).

Proof The differentiability properties offfollow from Theorem 2. From the
proof of (ii) of that theorem we know that K c_~ U H)!'" 2) is convex on
(a, b). Since K is convex, it is differentiable a.e., and the left- and right-hand
derivatives exist everywhere in (a, b) and are nondecreasing. Thus K" is
defined a.e. in (a, b). This implies that f lin ) exists a.e. in (a, b) because
HE C"'(a, b).

Let {(a l.· , bl.)} be a sequence of intervals which increase to (a, b) and such
thatfli") exists at each al and hI.' For eaeh k, deflnej(Pk : (fd by

I( Pk ; qIJ(x) PI,(X),

Itx),

(/I,(x),

if x < al..

if x E [a k , bk ],

if x b l.•

where PI. and (/I, are the mth Taylor polynomials for f at al and b l • respec-
tively. Let gl. be g(alJ for x al. ,g(bl,) for x bl. , and agree with g on
[a", bd. If iii, is a C'" function such that H!."'I (;1, then KI. ej( p: (f;.)

H I )iIll-2) is convex on ( x,. x.) because < 0 outside of [a . hi]' and
because KI. equals (f -- 1i)1I/' -2) on (a, . b,.) and is differentiable at the end­
points. Now it follows from Lemma I and (Ill 2) integrations by parts that
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the mth distributional derivative ofRpk ; ql'.) is greater than or equal to (in the
sense of distributions) the distribution defined by gk for each integer k O.
From this we obtain, just as in the proof of Theorem 3, that (](PI,; ql)
JZ:,,)(Ii,) ;:~ gk JZ:" holds in (a, b) for any n > O. Hence the sequence defined

bY/Ii IIp,, ;q,,) K" satisfies/,~III) l" in (a, b) and has the desired con-
vergence properties since .J(Pn; q,,) f (for n sufficiently large) on each
compact subinterval of (a, b) and ,~" = g" r?" ---+ g uniformly on [a, b].
This completes the proof.

Remark. Lemma I and Theorems 2, 3, and 4 remain valid when we
reverse the inequalities and replace the words "nondecreasing" and "convex"
by "nonincreasing" and "concaw" wherever they appear.

Theorem 3 shows that the original Landau polynomials inherit their

properties from f, so, for example, they might not be convex on [a, b] whenI'
is convex on [a, b]. Theorem 4 shows how to approximate by redefined
Landau polynomials having one prescribed property on [a, b] possessed by f
The following theorem treats (simultaneously) special prescribed properties.

THEOREM 5. Letfbe in era, b]. Iff has an)' of the properties

convex or cOllcw'e

nondecreasing or nonillcreasing,

(i)

(ii)

(iii)

odd or even where b ---a 0,

011 [a, b], then there exists a sequence of redefined Landau polynomials:/,,: ---+f
lI!1if(mnll' 011 [a, b] such that each /n has the corresponding property 0/1 [a, b].

Proof. For 21k b a, let Pk be the function determined by the line
through the points (a,j(a)) and (a l,·, f(aJ), and let (li. be determined by the
line through (b,f(b)) and (b l, ,f(b l;)), where ak cc a -- I and b l bIlk.
Then it is easy to see that each .J(Pk ; qJ (as defined in Theorem 4) inherits
on [2a b, 2b -- a] any of the properties (i), (ii), and (iii) from f (By
renumbering we may assume that J(PJ. ; qJ is defined for each positive
integer k.) Now it follows, from Lemma I, Theorem 4, and obvious facts
about the convolutions of even or odd functions with even functions, that
]lPi. ; qd K n inherits on [a, b] any of these properties from f for any
positive integers 11 and k. Sincc](Pk; qiJ -~funiformly on [a, b] and :Rn } is
a Dirac sequence, we can select from :.1l1h : (h) t:::.,,} a sequence U,,} which
converges uniformly to f on [a, b].

Remarks. (I) It is obvious that if each of the polynomials satisfies the
hypotheses of either Theorem 3 or Theorem 4 or has any of the properties
in Theorem 5, then f does also.
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(2) The results given here easily generalize

(i) whenfc LI[a, b] and convergence is in U norm;

(ii) in higher dimensions, when the functions are continuous on a
finite product of compact intervals (see [4, p. 123]).

(3) Since the function ~Xl/~ is convex on [0, 1] but cannot be extended
to a convex function on [a, I] for any a <:. 0, we see why the convolutions
J(p.,; qk) " Kn were used in the proof of Theorem 5.

(4) The degree of approximation of continuous functions by certain
convolution-type operators (including the Landau kernel) can be found in [6].
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